



**Problem:** Learning visual representations without human labels. **Observation I:** Existing works mainly leverage a **SINGLE** task.



- **MULTI-TASK** learning with three outputs for the *same* image input.
- CG to render multi-supervision.
- **Domain Adaptation** to better transfer to real-world.



**Adversarial Training Process** 

**Input:** Synthetic images X, real images Y **Output:** Domain adapted base network B

- while in training loop:
- Sample real images  $\{x \in X\}$  and synthetic  $\{y \in Y\}$
- Extract features  $z_x = B(x), z_y = B(y)$
- Keep D frozen, update B via three tasks w/ input y  $L(\phi_B, \phi_{tasks} | z_x) = -\sum \log(1 - D(z_x)) + L_{edge} + L_{depth} + L_{normal}$
- Keep B frozen, update D via adversarial loss w/ input (x, y)  $L(\phi_D | z_x, z_y) = -\sum \log(D(z_x)) - \sum \log(1 - D(z_y))$
- 1. C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by context prediction. ICCV 2015.
- 2. R. Zhang, P. Isola, and A. A. Efros. Colorful image colorization. ECCV 2016.
- 3. C. Doersch and A. Zisserman. Multi-task Self-Supervised Visual Learning. ICCV 2017.
- 4. L. Pinto, et al. The Curious Robot: Learning Visual Representations via Physical Interactions. ECCV 2016.

# **Cross-Domain Self-supervised Multi-task Feature Learning using Synthetic Imagery** Zhongzheng Ren and Yong Jae Lee Models, code, and more available at: Department of Computer Science, UC Davis

# Synthetic





### **Dataset:**

- Real world: **Places-365** (Zhou et al. PAMI'17)
- Synthetic: SUNCG (Song et al. CVPR'17) / SceneNet (McCormac et al. ICCV'17)

# **Transfer Learning Results**

| Method            | conv1 | conv2 | conv3 | conv4 | conv5 | 07 Cls. | 07 Det. | 12 Det. |
|-------------------|-------|-------|-------|-------|-------|---------|---------|---------|
| ImageNet          | 19.3  | 36.3  | 44.2  | 48.3  | 50.5  | 79.9    | 56.8    | 56.5    |
| Gaussian          | 11.6  | 17.1  | 16.9  | 16.3  | 14.1  | 53.4    | 41.3    | -       |
| Krahenbuhl et al. | 17.5  | 23.0  | 24.5  | 23.2  | 20.6  | 56.6    | 45.6    | 42.8    |
| Context           | 16.2  | 23.3  | 30.2  | 31.7  | 29.6  | 65.3    | 51.1    | 49.9    |
| BiGAN             | 17.7  | 24.5  | 31.0  | 29.9  | 28.0  | 58.6    | 46.2    | 44.9    |
| Context-Encoder   | 14.1  | 20.7  | 21.0  | 19.8  | 15.5  | 56.5    | 44.5    | -       |
| Colorization      | 12.5  | 24.5  | 30.4  | 31.5  | 30.3  | 65.9    | 46.9    | 44.5    |
| Jigsaw            | 18.2  | 28.8  | 34.0  | 33.9  | 27.1  | 67.6    | 53.2    | _       |
| Split-Brain       | 17.7  | 29.3  | 35.4  | 35.2  | 32.8  | 67.1    | 46.7    | 43.8    |
| Counting          | 18.0  | 30.6  | 34.3  | 32.5  | 25.7  | 67.7    | 51.4    | -       |
| Ours              | 16.5  | 27.0  | 30.5  | 30.1  | 26.5  | 68.0    | 52.6    | 50.0    |

ImageNet Classification w/o finetuning Comparable to methods learned on ImageNet *VOC w/ finetuning* SOTA results



Query

## **Nearest Neighbor Results**





**Ours w/o Domain Adaptation Ours full model Random weights** ImageNet Pretrained An initial evidence that our model can capture high-level semantics on real-world data.

## **Ablation Study**

| Task    | Adaptation | #Train | 07-Cls. | 07-Det. |
|---------|------------|--------|---------|---------|
| Edge    | -          | 0.5M   | 63.9    | 44.8    |
| Dep     | -          | 0.5M   | 61.9    | 45.8    |
| Surf.   | -          | 0.5M   | 65.3    | 45.4    |
| 3 tasks | -          | 0.5M   | 65.6    | 47.2    |
| 3 tasks | conv1      | 0.5M   | 61.9    | 46.0    |
| 3 tasks | conv2      | 0.5M   | 63.4    | 46.3    |
| 3 tasks | conv5      | 0.5M   | 67.4    | 49.2    |
| 3 tasks | conv6      | 0.5M   | 66.9    | 48.2    |
| 3 tasks | conv5      | 1.5M   | 68.0    | 50.0    |

### Multi-task! Multi-data! **Domain Adaptation helps!**

# **NYUD Results**

|    |                      | Lower t | the better | Higher the better |       |      |
|----|----------------------|---------|------------|-------------------|-------|------|
| GT | Methods              | Mean    | Median     | 11.25°            | 22.5° | 30°  |
| 1  | Zhang et al. CVPR'17 | 22.1    | 14.8       | 39.6              | 65.6  | 75.3 |
| 1  | Ours                 | 21.9    | 14.6       | 39.5              | 66.7  | 76.5 |
| 2  | Wang et al. ICCV'17  | 26.0    | 18.0       | 33.9              | 57.6  | 67.5 |
| 2  | Ours                 | 23.8    | 16.2       | 36.6              | 62.0  | 72.9 |

The learned features also transfer well on original three tasks.

## Acknowledgment

This work was supported in part by the National Science Foundation (NSF) under Grant No. 1748387. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF.