
The better our model performs on these tasks, the better transferable features it’s likely to get.

An initial evidence that our model can capture high-level semantics on real-world data.

Problem: Learning visual representations without human labels.
Observation I: Existing works mainly leverage a SINGLE task.

Observation II: Existing multi-task works are COMPLEX/LIMITED.
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NYUD Results
Lower the better Higher the better

GT Methods Mean Median 11.25º 22.5º 30º

1 Zhang et al. CVPR’17 22.1 14.8 39.6 65.6 75.3

1 Ours 21.9 14.6 39.5 66.7 76.5

2 Wang et al. ICCV’17 26.0 18.0 33.9 57.6 67.5

2 Ours 23.8 16.2 36.6 62.0 72.9

Transfer Learning Results

Our Idea: 
• MULTI-TASK learning with three                                                                                                            

outputs for the same image input. 
• CG to render multi-supervision.
• Domain Adaptation to better                                                                                                    

transfer to real-world.
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Adversarial Training Process 
Input: Synthetic images X, real images Y
Output: Domain adapted base network B
0   while in training loop:
1      Sample real images {x ∈X} and synthetic {y ∈Y}
2      Extract features zx = B(x), zy = B(y)
3      Keep D frozen, update B via three tasks w/ input y

4      Keep B frozen,  update D via adversarial loss w/ input (x, y)
L(φB , φtasks | zx ) = − log(1− D(zx ))∑ + Ledge + Ldepth + Lnormal

RGB Depth Pred. Depth GT Surf. Norm. Pred. Surf. Norm. GT Inst. Contour Pred. Inst. Contour GT

Models, code, and more available at:  
github.com/jason718/game-feature-learning

Ablation Study
Task Adaptation #Train 07-Cls. 07-Det.

Edge - 0.5M 63.9 44.8
Dep - 0.5M 61.9 45.8
Surf. - 0.5M 65.3 45.4

3 tasks - 0.5M 65.6 47.2
3 tasks conv1 0.5M 61.9 46.0
3 tasks conv2 0.5M 63.4 46.3
3 tasks conv5 0.5M 67.4 49.2
3 tasks conv6 0.5M 66.9 48.2

3 tasks conv5 1.5M 68.0 50.0

Method conv1 conv2 conv3 conv4 conv5

ImageNet 19.3 36.3 44.2 48.3 50.5

Gaussian 11.6 17.1 16.9 16.3 14.1

Krahenbuhl et al. 17.5 23.0 24.5 23.2 20.6

Context 16.2 23.3 30.2 31.7 29.6

BiGAN 17.7 24.5 31.0 29.9 28.0

Context-Encoder 14.1 20.7 21.0 19.8 15.5

Colorization 12.5 24.5 30.4 31.5 30.3

Jigsaw 18.2 28.8 34.0 33.9 27.1

Split-Brain 17.7 29.3 35.4 35.2 32.8

Counting 18.0 30.6 34.3 32.5 25.7

Ours 16.5 27.0 30.5 30.1 26.5

Query Random weights Ours full model ImageNet PretrainedOurs w/o Domain Adaptation

Nearest Neighbor Results

Qualitative ResultsArchitecture

07 Cls. 07 Det. 12 Det.

79.9 56.8 56.5

53.4 41.3 -

56.6 45.6 42.8

65.3 51.1 49.9

58.6 46.2 44.9

56.5 44.5 -

65.9 46.9 44.5

67.6 53.2 -

67.1 46.7 43.8

67.7 51.4 -

68.0 52.6 50.0

Dataset:
• Real world: Places-365 (Zhou et al. PAMI'17)
• Synthetic: SUNCG (Song et al. CVPR’17) / SceneNet (McCormac et al. ICCV'17)
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ImageNet Classification w/o finetuning
Comparable to methods learned on ImageNet

VOC w/ finetuning
SOTA results

L φD | zx ,  zy( ) = − log D zx( )( )∑ − log 1− D zy( )( )∑
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Synthetic

Multi-task! Multi-data! 
Domain Adaptation helps!

The learned features also transfer well on original three tasks.


