
Multi-task Adversarial Learning:  
• Adversarial loss: 

(1) modifier M removes privacy-sensitive face information 
while also being optimized for action detection; 
(2) discriminator D (face classifier) tries to extract 
privacy-sensitive information from modified faces:

Task: Learning to anonymize videos in a way 
that does not negatively affect recognition of human 
activities.
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Code, demo, and more results available:  
jason718.github.io/project/privacy/main.html

Qualitative Results #1

Architecture
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Identity: ???
Action: Applying Make-up Lips

Identity: Jessica
Action: Applying Make-up on Lips

Observation: Existing work largely use 
hand-crafted image processing methods to modify 
images/videos for privacy protection.
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• Blur (down-sample to extreme-low resolution):
 Ryoo et al. AAAI’17, AAAI’18

• Masking and strong Gaussian Noise: Standard practice.
• Super-Pixel / Edge map: Butler et al. HRI’15

• Detection loss:

• L1 loss preserves basic image structure:

Experiments

Left: JHMDB     Right: DALY

User Study: We applied trained modifier on new 
identities and collected 400 answers from 10 users.

Same person before and after modification:the identity is greatly changed.

Vladimir PutinSerana Williams

Leonardo DiCaprioJackie Chan

Video 1 Video 2
Same person in different frames: can you still identify the above celebrities?

Qualitative Results #2

• Q1: We sample a pair of modified images and ask user           
to do verification.

   Res: The overall accuracy is 53.3%, which is close to   
   random guess 50%.

• Q2: We use our model to modify famous celebrities and 
ask user to identify.

   Res: Users could only name 19.75% correctly based on 
   the modified images.

• A good model should locate on the top right corner. 
• Our method outperforms various baselines on both      

action & face tasks.

Analysis: After training,  discriminator D (face classifier) still get 
94.75% accuracy on LFW; i.e., it can still accurately recognize original 
faces despite being “fooled” by modified faces.
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