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Abstract

In neuroscience, understanding animal behaviors is key
to studying their memory patterns. Meanwhile, this is also
the most time-consuming and difficult process because it
relies heavily on humans to manually annotate the videos
recording the animals. In this paper, we present a visual
recognition system to automatically annotate animal behav-
iors to save human annotation costs. By treating the an-
notation task as a per-frame action classification problem,
we can fine-tune a powerful pre-trained convolutional neu-
ral network (CNN) for this task. Through extensive exper-
iments, we demonstrate our model not only provides more
accurate annotations than alternate automatic methods, but
also provides reliable annotations that can replace human
annotations for neuroscience experiments.

1. Introduction
Rodent models are now commonly used in neurobiol-

ogy to answer basic questions about brain function and to

study disease mechanisms. One of the most commonly used

measures of rodent cognitive function is to examine mea-

sures of learning and memory. Mice and rats are capable

of learning and remembering a wide variety of species rel-

evant information including the encoding and retrieval of

spatial relationships and object identity. There are a vari-

ety of behavioral tests that neurobiologists utilize to probe

memory formation and retrieval in rodents. Two of the most

common tasks examine memory for an object’s location or

identity. The Object Location Memory (OLM) and Novel

Object Recognition memory (NOR) tasks have been used to

examine memory enhancements and impairments in a wide

variety of genetically modified rodent models [6].

In both tasks an adult rodent is given a specified amount

of time to explore and learn about two identical objects. The

rodent is later brought back for a subsequent memory test.

During the test one of the two objects is either moved to a

new location (OLM) or replaced with a new object (NOR).

The test rodent is given an opportunity to explore both the

familiar and moved/new object during the testing session.

Figure 1. An example recording session of rodent behavior. The

annotator (machine or human) needs to label when the rodent be-

gins to explore an object and the duration of exploration. Due to

the strict neuroscience definition of ‘rodent exploration’, the label-

ing task can be very challenging. By formulating the task as per-

frame classification and fine-tuning powerful convolutional neural

network models, our approach significantly outperforms previous

tracking-based methods.

This task relies on the rodent’s innate preference for novelty
and a rodent that remembers the original training session

will preferentially explore the moved/new object compared

to the familiar object during the test.

The most common way of measuring the rodent’s behav-

ior is by: (1) recording a video of the rodent in action, and

(2) for an experienced human scorer to watch the video and

manually record the amount of time the rodent spends ex-

ploring each object. To produce reliable data, typically a

single video is annotated by 2-3 humans, in order to remove

personal annotation biases. In practice, each human anno-

tator often ends up labeling the same video multiple times

in order to fix annotation mistakes. Moreover, training a

human scorer requires lots of time and practice; for exam-

ple, in [6] a beginner was trained by repeatedly annotating

seven videos until their annotations matched those of pre-

vious experienced humans, and in [5] it took ∼350 hours

for a team of experts to annotate 88 hours of video. Due

to these limitations, performing large-scale experiments is
extremely difficult, and replacing labor costs in annotation
has become a critical problem.

To alleviate expensive annotation costs, researchers have

proposed to build automatic systems. The most common

approach is to track the animal in the videos by tracking

its nose [31, 1, 27], body [31, 1, 27, 5, 12], and rear key-
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points [31, 1, 27]. However, existing tracking based meth-

ods have failed to replace human annotators for two main

reasons: First, there is a very strict definition for each rodent

behavior pattern and two closely-related behaviors can have

only subtle differences (e.g., a rodent digging close to an

object vs. exploring an object). Second, the raw video data

obtained for the neuroscience experiments are often of poor

quality (e.g., the frames are gray-scale, low resolution, and

with illumination artifacts), and last relatively long (5-15

minutes). There are frequent occlusions between the rodent

and objects, and fast movements of the rodent cause motion

blur. These issues can easily lead to drifting for tracking

methods.

Main idea and contributions. In this paper, we pose the

annotation task as a per-frame action classification prob-

lem. The key insight is that classifying a rodent’s behavior

patterns for the OLM and NOR neuroscience experiments

does not require knowing what the rodent is doing at every

timestep – instead it only requires knowing what the rodent

is doing when interacting with the objects in the scene. By

posing the problem as one of frame-level classification in-

stead of object tracking, we are not constrained by the diffi-

culty of precisely tracking the various rodent parts, and thus

can circumvent issues with drifting. Furthermore, we can

leverage existing pre-trained convolutional neural network

image classification models and fine-tune them for this task.

Our experimental results demonstrate that our approach per-

forms significantly better than tracking based methods, and

are reliable enough to replace human annotations in neuro-

science experiments. We release our models, source code,

and a new dataset for studying rodent behavior.

2. Related work
Rodent memory research. Object Location Memory

(OLM) and Novel Object Recognition (NOR) tasks were

introduced in [30] to study animal memory and behavior.

These tasks have since then become a popular way for

studying rodent memory and brain structures [41, 2, 26].

OLM requires the hippocampus for encoding, consolida-

tion, and retrieval [16, 29] while NOR needs several differ-

ent regions such as the insular cortex [2] and ventromedial

prefrontal cortex [2]. Others [9, 5, 27, 19, 12, 32] study

rodent behaviors using hand-engineered pipeline systems.

Object tracking. Tracking algorithms (e.g., [11, 17, 20,

21, 44]) can be used to study both OLM and NOR tasks

since the absolute location of the objects in the video is

fixed (i.e., knowing the precise location of the rodent’s

keypoints is often sufficient to know whether the rodent

is exploring an object or not). However, existing at-

tempts [1, 31, 12, 27, 19] to replace human annotations have

largely been unsuccessful. Apart from the usual limitation

of tracking algorithms requiring human supervision to ini-

tialize the track, the rodent’s fast motion and ambiguous

Figure 2. (A) The neuroscience experimental timeline of Object

Location Memory (OLM) and Novel Object Recognition Memory

(NOR). (B) Object placement and experimental room settings. (C)

Images from our Rodent Memory (RM) dataset.

appearances frequently cause drifting, which results in in-

accurate predictions of the rodent’s behavior patterns.

Convolutional neural networks. Convolutional Neural

Networks [25, 24, 34, 37, 39, 18] (CNN) have recently

revolutionized the field of computer vision. They have

been used for various tasks including image classifica-

tion [24, 34, 37, 18], object detection [14, 13], human pose

estimation [43, 38], and video classification [39]. In partic-

ular, it has been shown that a CNN trained on one task (e.g.,

ImageNet for image classification) can be fine-tuned for use

on another related task [10, 14, 45]. This is especially use-

ful when training data for the new task is limited. For ani-

mal behavior recognition, recent work uses deep neural net-

works to study fruit fly egg-laying [36] and marmoset head

position [40]. For rodent behavior research, we are the first

to leverage the transferability of CNNs to make use of pow-

erful pre-trained classification models.

3. Neuroscience background
Novel Object Recognition (NOR) and Object Location

Memory (OLM) have been widely used in the study of the

neurobiological mechanisms underlying long-term memory

formation. In this section, we first explain the detailed neu-

roscience settings of our experiments. We then introduce

the precise criteria used to define rodent exploration.

3.1. Neuroscience experimental setting
There are three main steps in NOR and OLM experi-

ments as shown in Figure 2A. First, a five-minute daily ha-

bituation is applied for six days, during which the experi-

mental rodents are allowed to explore the empty chamber
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freely. 24 hours after habituation, the rodents are put into

the same chamber again with two identical objects. The

rodents are allowed to explore the objects for 10 minutes.

After 24 hours or 90 minutes (depending on testing condi-

tions), the rodents will explore the same chamber with one

novel object (NOR) or one of the objects moved to a differ-

ent location (OLM). This session will last for 5 minutes.

Both OLM and NOR use identical chambers (a 23×30×
23 cm white open rectangular field). Circular tins filled with

cement to brim are used in OLM and NOR. Square candle

holders filled with cement are used as the new object for

NOR. The specific arrangements are shown in Figure 2B.

Example video frames from recorded sessions for OLM and

NOR are shown in Figure 2C left and right, respectively.

The main measure for both tasks is time spent in explo-

ration of the two objects during testing. (During training,

the animals are supposed to show similar preferences for the

two objects.) Animals that remember the original training

experience will preferentially explore the changed object

during testing. When combined correctly, these two tasks

can allow users to address a variety of experimental ques-

tions involving manipulations of different brain regions and

molecular targets.

3.2. Criteria for rodent exploration

The following criteria [6] are used to define a rodent’s

exploration behavior:

Exploration: Interaction time of a rodent with the object

when the rodent’s nose is within 1 cm of the object and is

pointing directly at the object so that an elongated line from

eyes to nose would hit the object. No part of the rodent’s

body should be touching the object except the nose.

The following do not count as exploration:

1. The rodent is not approaching the object (e.g., if the

rodent re-orientates itself and the nose accidentally

comes close to the object (Figure 3A)).

2. The rodent is on top of the object (even if it is looking

down at the object) (Figure 3B).

3. The rodent is looking over the object (Figure 3C).

4. The rodent is engaged in a repetitive behavior like dig-

ging close to the object or biting the object (Fig. 3D).

The following special cases are also excluded:

1. Animals that do not explore more than 3 seconds total

for both objects are excluded from analysis.

2. Animals that have discrimination indexes (see Eqn. 2)

greater than 20 are considered to have a significant lo-

cation/object bias and are also excluded from analysis.

Figure 3. Examples of ambiguous behaviors. The actions shown

in these images are all considered to be non-exploration. When

recognizing actions, the false positive predictions are most likely

to happen in these cases since their appearances look very similar

to those of exploration.

Due to the strict definition of exploration vs. non-

exploration, annotating rodent exploration—be it manual or

automatic—can be quite challenging. Figure 3 shows exam-

ples of ambiguous cases that are non-exploration behaviors

that could easily be confused to be exploration.

4. Approach
In this section, we first present our Rodent-Memory

dataset, which we use to train and test our models. We then

describe our approach for transferring a pre-trained CNN

classification model to per-frame rodent behavior classifi-

cation. Finally, we introduce a new human annotation tool

for providing ground-truth annotations and visualizing the

machine generated prediction results.

4.1. Rodent Memory dataset
We build a new dataset called Rodent Memory (RM)

for both computer vision and neuroscience researchers to

use. It contains 80 videos from our neuroscience experi-

ments and frame-level annotations of rodent behaviors. The

5 behavioral categories are constructed based on the object

types, their placements, and rodent actions. For NOR data,

the 5 categories are: exploring (C0) nothing, (C1) left circle

object, (C2) left square object, (C3) right circle object, and

(C4) right square object; for OLM data, they are: exploring

(C0) nothing, (C1) left object, (C2) right object, (C3) top

object, and (C4) bottom object. See Figure 2C for exam-

ples of the different configurations of the objects, and Table

1 for dataset statistics.

4.2. Per-frame classification of rodent behaviors
Neuroscientists have used commercial tracking software

[31, 1], which track the rodent’s keypoints (nose, body, and

rear) to automatically annotate the rodent’s behavior. How-

ever, in practice, these programs fail to save human annota-

tion costs due to frequent errors. According to our observa-

tions, their three main failure modes are: (1) The tracker is

prone to drift due to the low-quality videos used in record-

ing the neuroscience experiments and the fast motion of the

rodents; (2) When using these commercial programs, the

user has to define an interest donut-shaped “object” region;

a rodent behavior counts as exploration if the rodent’s nose
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videos frames C0 C1 C2 C3 C4

NOR train 36 450720 429916 7314 3815 5139 4536
NOR test 12 152776 144707 2148 1750 2382 1789

OLM train 24 227716 220039 1829 1557 1645 2646
OLM test 8 77108 73516 777 491 1025 1299

Table 1. Rodent Memory dataset statistics. See Sec. 4.1 for details.

is in the region while the body and rear points are outside the

region. Because of this specific region setting, the tracking-

based methods often mislabel the non-exploration examples

shown in Fig. 3 as exploration (for example, in Figs 3A, C,

D, the rodent’s nose keypoint will be in the region while the

body and rear keypoints will be outside of it); (3) Because

of the low resolution of the video, sometimes the tracker

confuses the nose and the rear.

Since we only care about the time instance in which a

rodent is exploring an object (i.e., we can ignore all other

frames), it is not necessary to track every movement of the

rodent. Thus, unlike previous methods that track the rodent,

we instead opt to treat the rodent behavior annotation task as

a per-frame classification problem. This allows us to avoid

drifting issues associated with tracking.

For this, we leverage CNNs, which have been proven to

produce robust visual representations that are more invari-

ant to translation and scale changes of the pattern-of-interest

than traditional hand-crafted features (e.g., SIFT [28] or

HOG [7]). Since state-of-the-art deep networks (e.g.,

AlexNet [24]) have a large number of parameters which

can easily lead to overfitting, instead of training a CNN

from scratch, we take a pre-trained CNN trained on Ima-

geNet [8] and fine-tune it for our rodent behavior classifi-

cation task. The CNN is fine-tuned to detect each behavior

category, which is equivalent to detecting a specific con-

figuration of the objects and rodent (e.g., rodent exploring

the left circle object). Due to the invariance properties of

CNNs, the model will be able to detect the configuration

regardless of its specific location within the frame. Further-

more, the model can disambiguate more ambiguous cases

(as shown in Figure 3), since they will explicitly be labeled

as non-exploration during training. We next describe our

network architecture.

4.3. Architecture details

A typical CNN is composed of a stack of convolutional

layers and fully-connected layers. Because of the local con-

nectivity and shared weights in the convolutional layers, a

CNN drastically reduces the amount of parameters com-

pared with more traditional (fully-connected) neural net-

works, which helps reduce overfitting and allows for effi-

cient processing on GPUs. In this paper, we use abbrevia-

tions Ck, Fk, P, D, C to represent a convolutional layer with

k filters (Ck), a fully-connected layer with k neurons (Fk), a

down sampling max-pooling layer (P) with kernel size 3 and

stride 2, a dropout layer (D) [35], and a soft-max classifier

(C). We consider two network architectures: AlexNet [24]

Figure 4. Data augmentation via horizontal/vertical flipping and

180-degree rotation. From left to right: original frame, vertical

flipping, horizontal flipping, and 180-degree rotation. We update

the labels accordingly.

and C3D [39].

We transfer AlexNet [24] into use by replacing its last

1000-dimensional classification layer with a 5-dimensional

classification layer. Using the above abbreviations,

our network architecture is (kernel size in parenthe-

ses): C96(11)-P-C256(5)-P-C384(3)-C384(3)-C256(3)-P-

F4096-D-F4096-D-C. Except the last classification layer,

all convolutional and fully-connected layers are followed

by a ReLu [24] non-linearity. The input image size is

227×227×3 (width×height×color). We randomly ini-

tialize the weights of the last fully-connected layer. We ini-

tialize the remaining layers using the weights pre-trained on

ImageNet [8] and fine-tune them using our RM dataset.

We also transfer C3D [39], which simultaneously learns

spatial and temporal features by performing 3D convo-

lutions, and has been shown to outperform alternate 2D

CNNs for video classification tasks. In the C3D archi-

tecture, the convolutional filters move in three directions

– along the horizontal and vertical spacial axes as well

as along the temporal axis. Our C3D network architec-

ture is: C64-P-C128-P-C256-C256-P-C512-C512-P-C512-

C512-P-F4096-D-F4096-D-C. All kernel sizes are set to

3×3×3. The model takes consecutive frames with size

128×171×d×3 (width×height×depth×color) as input.

We replace its last classification layer with a 5-dimensional

classification layer. It is pre-trained on Sports-1M [23] and

fine-tuned on our RM dataset.

Data augmentation. We increase our training data by

employing data augmentation, which helps reduce over-

fitting. Because of the specific placement of the objects

in the scene for OLM and NOR (left/right and top/down,

see Figure 2B), we adopt three specific data augmentation

techniques: horizontal flipping, vertical flipping, and 180-

degree rotation. After augmentation, we change the class

labels of the new augmented data accordingly. For exam-

ple, in Figure 4, the first picture is the original one. With

horizontal flipping and 180-degree rotation (second and last

pictures of Figure 4, respectively), the left square (class 2)

and right circle (class 3) become left circle (class 1) and

right square (class 4), respectively. After vertical flipping,

the labels remain the same (third picture of Figure 4).

Post-processing. After we obtain the test-frame predic-

tions and their probabilities, we use a temporal gaussian fil-

ter (with sigma equal to five frames) to smooth out the pre-
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Figure 5. A screen shot of our ground-truth annotation tool. The

imported video can be played in adjustable frame rates. The

human-generated or machine-generated annotation is shown at the

bottom, one row for each of the four rooms. The green line indi-

cates the current temporal position and the blue/red box indicates

the rodent is exploring the left/right object.

dictions. This helps reduce noise and outlier predictions,

and results in 0.1%-0.7% higher classification accuracy for

NOR and OLM in our experiments.

4.4. Annotation tool for ground-truth generation

As part of this work, we create an annotation tool based

on [33] to manually-annotate our RM dataset with ground-

truth labels (for training and evaluating our models, and vi-

sualize our model’s outputs). With a carefully designed in-

terface, the program allows ground-truth annotations to be

generated efficiently, and allows the machine-generated re-

sults to be more easily checked by researchers (for correct-

ing any machine-generated errors).

As shown in Figure 5, it is common to have several neu-

roscience experiments conducted simultaneously over sev-

eral rooms (4 in our experiments). The main reason for this

is because a single video can capture all rooms, saving video

recording and storage costs as well as experimental costs.

Prior to our work, annotators used a crude labeling inter-

face (with a simple spacebar click to record the start and

end of an action) and thus had to watch the same video four

different times to label each room. Our annotation tool al-

lows changeable playing frame rates and start points, which

means all rooms can be labeled and checked at the same

time and frames of no interest can be easily skipped. In ad-

dition, the tool allows a user to choose a different color for

each behavior category for easier visualization.

Our annotation tool can also be used to visualize the

machine-generated prediction results, which were lacking

in previous commercial softwares (e.g., [31, 1] only gener-

ate a cumulative exploration time and do not produce per-

frame outputs). Thus, it was not easy for researchers to cor-

rect the errors in the machine-generated results. Our tool

can significantly reduce re-checking efforts while generat-

GT Avg. length Avg. length [6] Accuracy [6]

NOR 13.5 4.2 68.7%

OLM 17.3 4.3 63.6%

Table 2. Comparison between the annotations obtained with [6] vs.

ground-truth (GT) annotations obtained with our annotation tool.

ing more accurate frame-level ground truth labels to begin

with. Another important feature is that we can visualize

the results according to their prediction probabilities, which

means the human annotator can focus on the low-confidence

predictions (which are more likely to have errors).

Comparison to [6]. In [6], a timer program was used to

record the rodent’s total exploration time. While watching

a video, an annotator presses/releases a key when an explo-

ration begins/ends. We compare the annotations collected

using this previous program, with the ground-truth annota-

tions1 collected with our interface.

Table 2 shows the result. We can see that: (1) It is un-

avoidable for a human to miss some exploration frames us-

ing the previous annotation tool because some amount of

time is needed to make a judgement on what the rodent

is doing. This is why the average exploration time (Avg.
length, which is the average duration of an exploration in

terms of number of frames) is shorter using the previous

annotation tool, since the annotator often misses ground-

truth exploration behaviors. (2) In [6], one cannot play or

stop the video at any time. Therefore, when the annotator

makes a mistake, he/she must re-annotate from scratch to

fix the error. Due to this, it is almost impossible for a hu-

man annotator to go through the video without making a

single mistake. Thus, the accuracy of the previous annota-

tions, with respect to the ground-truth annotations, is less

than 70%.

5. Experiments
In this section, we evaluate: (1) Frame-wise classifica-

tion performance of our automatic annotation framework;

(2) Qualitative results of both successful and failure predic-

tions; and (3) Whether our automatic annotator can replace

human annotators for neuroscience experiments.

Implementation details. We fine-tune the AlexNet [24]

and C3D [39] pre-trained models available in the Caffe

Model Zoo [22]. The frames are cropped into 4 images,

so that each contains only one room. The images are re-

sized to AlexNet: 256×256 and C3D: 128×171. During

training, AlexNet: 227×227 and C3D: 114×114 crops are

randomly sampled from an image. We use SGD with mini-

batch size of 60, weight-decay of 0.00001, and momentum

of 0.9. The learning rate starts from 10−4 and is divided by

10 every 1000 iterations. The fully-connected layers have

a dropout [35] rate of 0.5. Due to the disproportionately

1Ours is ground-truth, since we carefully annotated and confirmed ev-
ery frame in all training and testing videos.
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Figure 6. Running screenshot of AnyMaze. The tracker often

drifts due to varying illumination conditions, gray-scale and low-

resolution frames, and long-term tracking requirements (a video

can be several minutes long).

large training data of the C0 class (which can make learning

difficult), we randomly sample ∼10% of C0 frames during

training.

Baseline method. AnyMaze [1] is a tracking-based com-

mercial automatic annotator, previously used for OLM and

NOR experiments [42, 15, 4, 3]. It is designed specifically

for neuroscience behavior experiments, and in particular, to

detect and track rodents under various illumination condi-

tions and experimental conditions.

Since AnyMaze is a commercial software, we cannot

know its technical details. However, from our observation

of its outputs, it appears to be a detection-based tracking

program. It detects the rodent in the room first and then

tracks three body points (head, body, and rear) inside the

detected bounding box. If the tracker drifts significantly, it

will try to reinitialize the tracker by detecting the rodent.

Before running AnyMaze, a human annotator must man-

ually provide the object region in the first frame (since the

camera is static, the first frame’s annotation is used for all

frames). The room boundary and the color of the rodent also

needs to be manually set. When the rodent’s nose keypoint

is inside the object region and the body and rear keypoints

are outside of it, it counts as exploration.

Evaluation metrics. We evaluate all methods using the

ground-truth annotations obtained using our new annotation

tool from Sec. 4.4. We quantitatively evaluate per-frame

classification accuracy, and the total exploration time using

a neuroscience behavioral metric.

5.1. Rodent exploration classification accuracy

We compare our CNN-based framework to the baseline

AnyMaze tracking approach. We evaluate per-frame classi-

fication accuracy on our RM testing set.

Table 3 shows the result. First, both our fine-tuned

AlexNet and C3D networks significantly outperform the

commercial AnyMaze software baseline. Since the behav-

ior classification task only requires knowing whether the ro-

dent is exploring an object or not, there is no need to track

all of the rodent’s movements. By taking advantage of this

fact, our frame-level classification approach performs much

better than the tracking-based AnyMaze baseline, which of-

ten fails due to drifting. Figure 6 shows typical failure cases

NOR OLM

AnyMaze2 78.34% 74.25%

AlexNet 93.17% 95.34%
C3D (d=3) 89.30% 91.98%

C3D (d=5) 87.54% 83.03%

C3D (d=9) 77.74% 73.39%
Table 3. Rodent exploration classification accuracy on RM dataset.

Our best CNN-based model (AlexNet) significantly outperforms

the commercial AnyMaze tracking software.

of AnyMaze. The tracker often drifts, which leads to mis-

classification of the rodent’s exploration behavior.

Second, we find that C3D does not perform as well as

AlexNet, even though it encodes (short-range) temporal in-

formation. This is likely due to the fixed temporal depth of

the network. Since the length of a rodent’s exploration of

an object can vary from as short as 3 frames (0.1 seconds)

to as long as 45 frames (1.5 seconds), setting the temporal

depth to be bigger than the actual exploration time can cause

the network to miss short explorations (which occur very

often). Empirically, we find that shorter temporal depths

leads to more accurate results. Thus, AlexNet (which pro-

duce per-frame classifications, i.e., depth of 1 frame) out-

performs any variant of the C3D network. Another possi-

bility is that C3D is pre-trained on Sports-1M [23] which

consists of various human sport actions. Thus, the domain

differences between humans and rodents can cause the net-

work to underperform. In contrast, AlexNet is pre-trained

on ImageNet [8] with more diverse objects, so it can gener-

alize better.

Figure 7 shows the confusion matrix of our AlexNet net-

work. Overall, our model is able to accurately differentiate

the four exploration categories. Incorrect predictions are

mostly due to mis-classifying the non-exploration category

(C0) with one of the exploration categories (C1-4). This is

because the most ambiguous actions belong to C0 (as we

show in the qualitative results in Sec. 5.2). For NOR test-

ing, our model makes more mistakes when classifying C2

(it often mis-classifies it as C4). This is mainly due to one

testing video, in which the two objects are placed very close

to each other. If the rodent is roaming in between the two

objects, it is difficult to distinguish which side is its head

(see Figure 9, Body, 2nd, 4th, and 5th columns).

5.2. Qualitative results

We next show qualitative results of our predictions. Fig-

ures 8 and 9 show successful and failure examples, respec-

tively, according to our model’s prediction confidence. (The

confidence decrease from left to right.)

2Since AnyMaze does not provide frame-level predictions and only cu-
mulative exploration timings, we manually inspect all testing video frames
to compute its classification accuracy.
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Figure 7. Confusion matrix of our AlexNet predictions. (Left)

NOR testing, (Right) OLM testing.

Successful cases. Our model is simple yet powerful to

detect the exploration frames among the huge number of

frames (only 5 percent of all frames are exploration). From

the qualitative results, we can see that:

• The higher our model’s confidence, the more accurate

it is in predicting the rodent’s behavior.

• Our model is robust to clutter (such as a human hand

in the scene), various illumination conditions, and de-

formation of the rooms and objects due to changes in

the camera viewpoint.

• Some actions such as passing or circling the object can

easily be confused to be exploration by tracking-based

methods. However, our model can differentiate those

behaviors since it has been trained (with lots of data) to

only classify frames in which the rodent’s nose is very

close to and pointing to the object.

• Many of the lower confidence predictions are on

frames in which the body of the rodent is curled. This

is because when the rodent is climbing or digging the

object (which are considered as non-exploration), it

will also curl its body. Therefore, this is an ambigu-

ous pattern for our model.

Failure cases. While our model produces accurate predic-

tions in most cases, it does make mistakes:

• If the rodent is heading to the object and the distance is

very close (but farther than 1cm), our model can mis-

classify the frame as exploration (Fig. 9, row 1).

• Because the video frames are gray scale and low reso-

lution, it can be difficult to tell the difference between

the front-end and rear-end of the rodent. This can be

problematic when the rodent is moving away from the

object but its rear stays very close to the object, which

can be misclassified as exploration (Fig. 9, row 2).

• If the rodent is just passing rather than exploring the

object, it can sometimes be hard even for humans to

differentiate these frames (Fig. 9, row 3).

• The rodent’s head reaches a little into the object, which

should be counted as non-exploration (Fig. 9, row 4).

Annotator T1 T2 DI
Ours 0.79 0.952 0.845

AnyMaze 0.67 0.659 0.599
Table 4. Pearson’s correlation coefficient between the automatic

(our approach / AnyMaze) and ground-truth annotations.

5.3. Application to neuroscience experiments
Finally, we evaluate whether our automatically gener-

ated annotations can replace human annotations for neu-

roscience behavior experiments. For this, we compute a

standard neuroscience metric used to measure how long a

rodent explores one object versus another object. We com-

pare the score obtained using our model’s predictions to that

obtained using human annotations.

Denote n1, n2, fr as the number of frames annotated

(predicted) as exploring the first object (unchanged object),

second object (moved/new object), and the video frame rate.

Then, the total exploration time of each object is:

T1 = n1 ∗ fr T2 = n2 ∗ fr (1)

and the Discrimination Index (DI) is:

DI = (n1− n2)/(n1 + n2) (2)

We compare the DI and total exploration times com-

puted by different methods across all testing videos. Table

4 shows the Pearson’s correlation coefficient of these scores

between our program / AnyMaze and the ground-truth an-

notations. We can see that our prediction has a stronger cor-

relation with the ground-truth human annotations for both

total exploration times as well as DI.

In [6], a trainee annotator becomes qualified when

his/her annotations and the ground-truth annotations (on 8

test videos) have a Pearson’s correlation coefficient higher

than 0.7. Our automatic annotator meets this criterion, and

thus is good enough to replace a qualified human annotator.

6. Conclusion
We have presented a simple yet effective approach to

automatically annotate rodent’s behaviors in neuroscience

experimental videos that study rodents’ long-term memory.

Our results demonstrate that our model significantly outper-

forms a previous tracking-based commercial software de-

signed specifically for this task. We also show that our ap-

proach produces annotations that can be used to replace a

qualified human annotator.

Today, most neuroscience experiments rely heavily on

extensive human labeling. We hope this paper will open up

possibilities for using computer vision techniques to auto-

mate such arduous labeling tasks. Importantly, this direc-

tion would allow researchers to scale up their experiments,

which may lead to more robust and novel findings.
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Figure 8. Example successful predictions. NOR: first 4 rows, OLM: next 4 rows. In each row, the examples are ordered according to our

model’s prediction confidence (from left to right, high to low confidence). See text for details.

Figure 9. Examples of the most common failure cases in which our model falsely predicts the frames as exploration. See text for details.
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